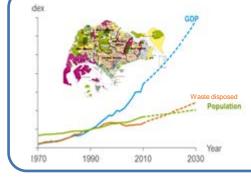

Singapore's Waste Management System

Efforts Towards Achieving a Zero Waste Nation

Lim Siak Heng, Principal Engineer Presented at IEA Bioenergy Task 36 Workshop 10 Jan 2017

Singapore's Solid Waste Management System



Waste Management Challenges

Land Scarcity

- Prolonging lifespan of Semakau Landfill
- Minimising footprint for waste treatment facilities

Increase Waste Generation

- Meeting treatment capacity demands
- Achieving higher plant efficiency

Reliance on Manpower

 Increasing manpower productivity

Climate Change

 Minimising carbon emissions / environmental impacts

High Public Expectation

 Meeting high public hygiene and cleanliness expectations

Operational Challenges

- Collecting waste daily (putrescible waste due to tropical climate)
- Highrise setting make waste recycling challenging

Waste Management Strategies

To meet the vision of a Zero Waste Nation, emphasis is placed on waste minimisation and recycling

Minimisation / Prevention

- Promote efficient use of resources in production processes
- Avoid waste through product re-design and reuse

Recycling

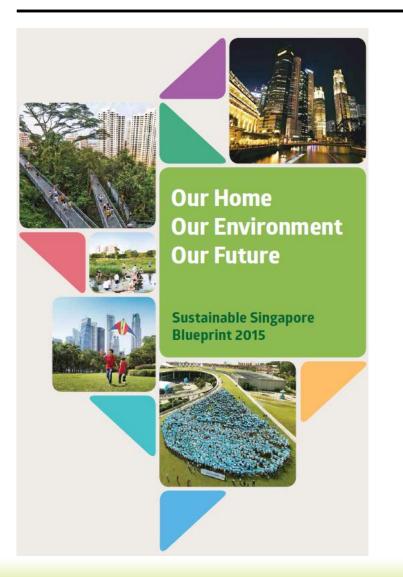
- Maximise resource recovery from waste
- Adopt better recycling methods
- Promote waste segregation at source in homes & businesses

Waste-to-Energy / Volume Reduction

 Adopt innovative technology to maximise energy recovery, minimise ash & land use

Landfill

Minimise waste to landfill



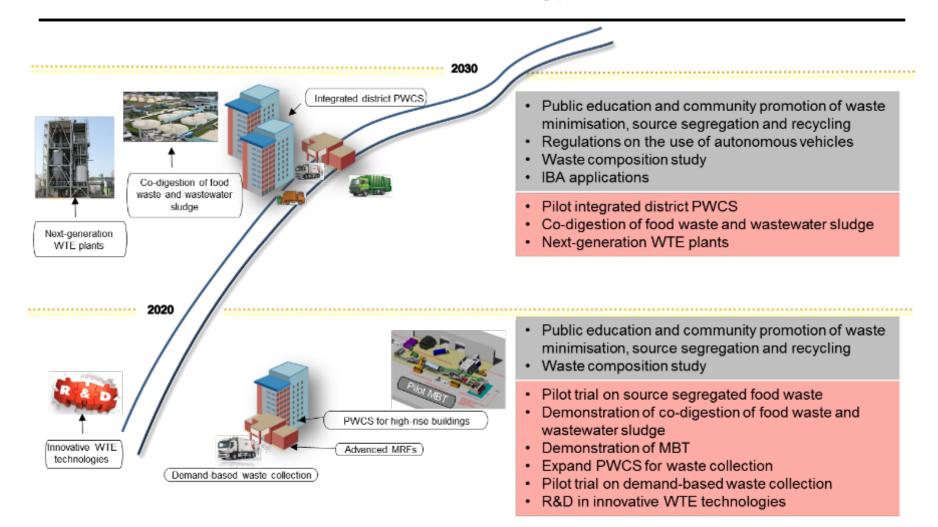
Sustainable Singapore Blueprint

Towards a Zero Waste Nation

We will work towards becoming a Zero Waste Nation by reducing our consumption of, as well as reusing and recycling all materials to give

them a second lease of life. The Government, the community and businesses will come together to put in place infrastructure and programmes that make this our way of life. We will keep Singapore clean and healthy, conserve precious resources, and free up land that would otherwise have been used for landfills, for our future generations to enjoy.

Achieve resource sustainability - overall national recycling target of 70% by 2030


Solid Waste Management Technology Roadmap

Proposed pathways on RDD&D to achieve 2030 waste management vision goals

- Maximise cost effectiveness and affordability while maintaining high levels of public health
- Maximise recycling and achieve recycling target of 70% by 2030
- Maximise resource and energy recovery from residual waste
- Minimise emissions and land footprint

Proposed Solid Waste Technology Roadmap

Waste Minimisation and Recycling Programmes

3R Packaging Awards in recognition of SPA signatories towards the 3R of packaging waste **Commercial Premises**

Mandatory Reporting Requirement

Large commercial premises to report waste data and waste reduction plans

SR Guidebook for Shopping Malls

3R Guidebook for Shopping Malls

Homes, Schools, Public Places

Enhancements to National Recycling Programme

Examples of Innovative Waste Solutions

Solar-powered smart compactor bin

Pneumatic waste-conveyance system

On-site food waste recycling machine at food centre

Tender for food waste recycling machines in schools

New Waste-to-Energy Plant & Integrated Waste Management Facility

Capacity: 3,600 tonnes/day

TuasOne Waste-to-Energy Plant

Expected completion in 2019

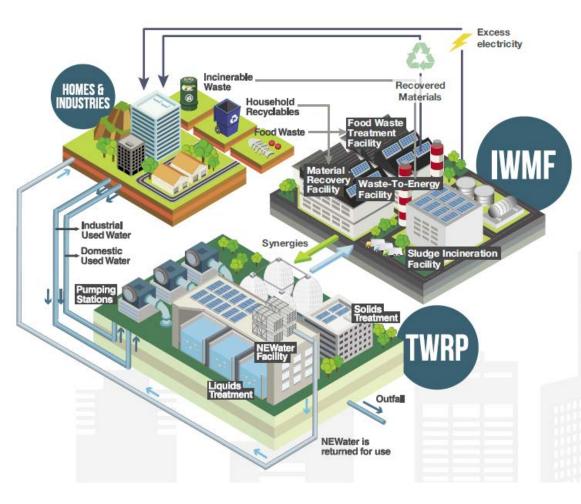
Integrated Waste Management Facility

Potential process synergies

Expected completion in phases from 2022 and beyond

Co-located with PUB's Tuas Water Reclamation Plant

TuasOne WTE Plant



Tuasone WTE Plant

Facts & Figures

- Develop under a Design-Build-Own-Operate scheme
- Provide waste treatment services agreement for a 25-year period
- Estimated project value: SGD750 million
- Incineration technology: Reverse-acting stoker system
- Capacity: 3,600 tonnes of waste per day
- Land Area: 4.8 hectare
- Best land utilisation factor (750 t/d per hectare)
- Generate 120 MW of electricity per day
- One of the most efficient in terms of energy recovery per unit waste incinerated

Integrated Waste Management Facility (IWMF)

Design objectives

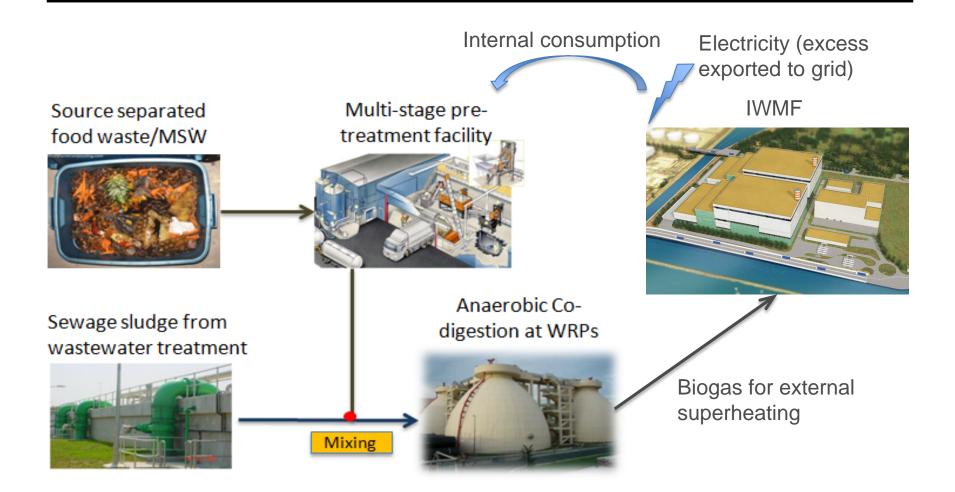
- Maximise energy recovery
- Maximise resource recovery
- Minimise environmental impacts
- Maximise system resilience
- Optimise land use
- Optimise synergies over water-energy-waste nexus

IWMF – Water-Energy-Waste Nexus

Synergies reap from the co-location of IWMF and TWRP

Water Synergies

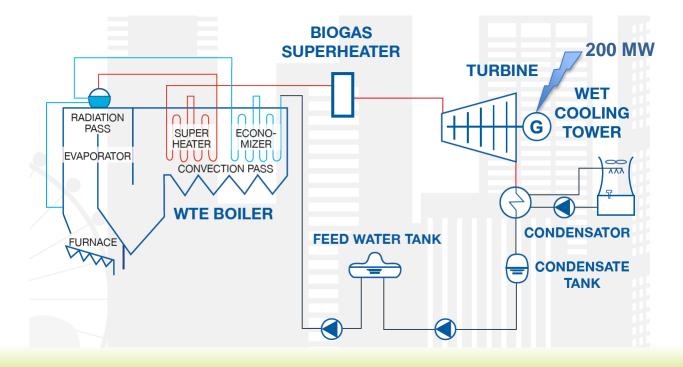
- Water from TWRP to IWMF for process use
- Used water from IWMF to TWRP for treatment

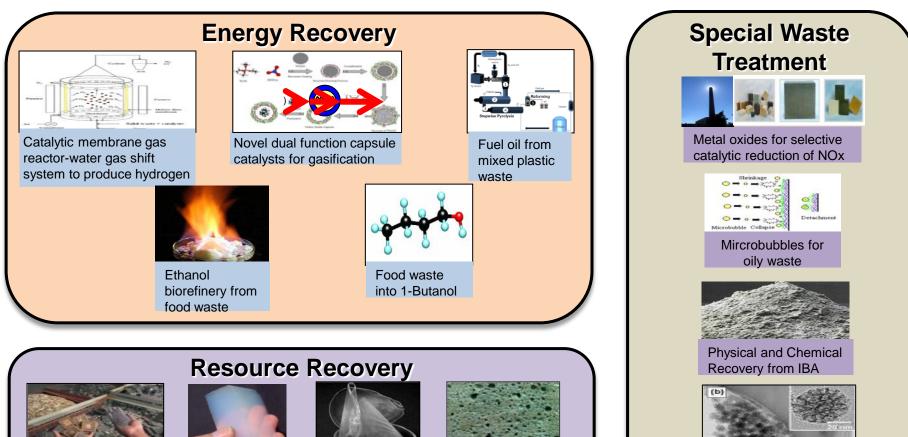

Energy Synergies

- Power supply from
 IWMF to TWRP
- Biogas from TWRP to IWMF for higher overall plant thermal efficiency
- Steam from IWMF to TWRP for sludge thermal hydrolysis and greasy waste treatment

Waste Synergies

- Food waste from IWMF to TWRP for codigestion with used water sludge
- Dewatered sludge from TWRP to IWMF for treatment and electricity production
- Grit from TWRP to IWMF for treatment


IWMF Energy-Waste Synergy - Co-digestion of Food Waste and Used Water Sludge


IWMF – Enhancing Energy Recovery

Achieve high overall plant thermal efficiency through:

- Optimised combustion process and boiler designs
- Increased steam parameters of 440°C/50-60 bar
- External biogas superheater to boost steam parameters to 480°C/50-60 bar
- Use of Wet Cooling Towers

NEA's Efforts in Waste Management Research

Precious and heavy metals recovery from e-waste

to aerogels

Plastic waste to biodegradable material

IBA to Aerated concrete

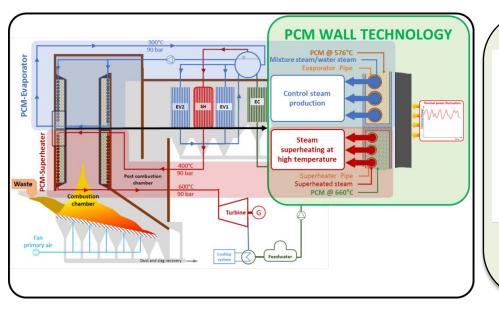
100 nm Chemical stabilisation of ash using mesoporous silica

NEA's Efforts in Waste Management Research

WTE R&D Programme funded by the National Research Foundation

Basic Re	esearch Applied Research / Proof of Concept	Test-bedding & Demonstration	Operations	
Competitive Research Programme	 Fund research and innovations in thermal treatment technologies 		 Outcomes To achieve higher energy efficiency for new WTE plants Maximise resource recovery and minimise environmental impacts Train skilled and 	
Develop WTE research infrastructure		• Development of a WTE research facility		
Support Demonstration and Test-bedding	ir • Ir	ranslate lab research nto pilot scale ntegration of omponent technologies	professional manpower	

WTE Competitive Research Programme – Awarded Project Examples


Waste/RDF

Raw

Syngas

Particle

Removal

Application of Phase Change Materials (PCM) for improved energy efficiency in Waste to Energy (WtE) plants Gasification-based Syngas Upgrading and Purification System for Enhanced Power Generation

Catalytic Tar

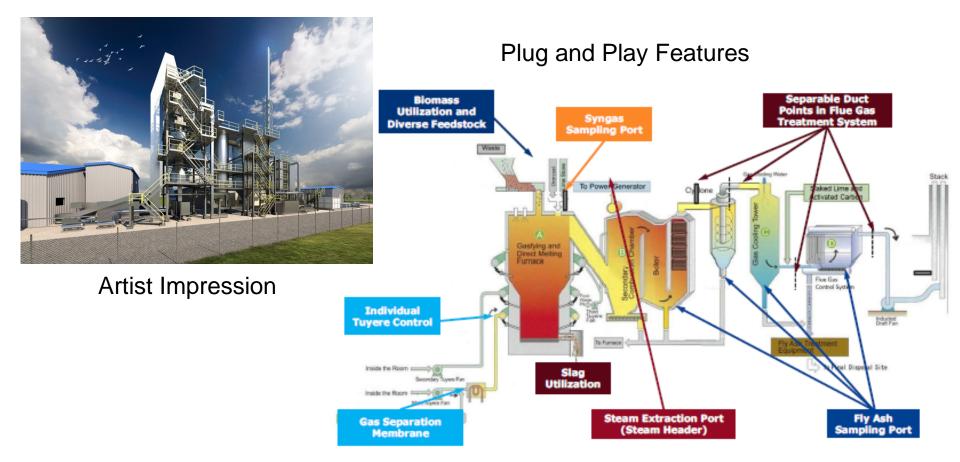
Reforming

Steam

Water

Alkali Metals, Acid

Gas Removal


Cooling

Clean

Syngas

Proposed WTE Research Facility

A platform to support research, education, demonstration and test-bedding

Waste Management Focus Areas

More Efficient Collection, Sorting and Pretreatment (e.g. MRFs, MBT)

Organic Waste Separation & Treatment (e.g. Co-digestion, high value products, etc)

Thermal Treatment for Waste (e.g. advanced mass-burn, gasification, etc)

Ash Treatment and Utilisation (e.g. metal recovery, land reclamation, etc.)

Our Environment

Safeguard • Nurture • Cherish

