
VALORGAS project – Collection and AD of Food Waste

Sonia Heaven University of Southampton

Valorisation of food waste to biogas - Project 241334

Sponsored by FP7 ENERGY.2009.3.2.2

13 partners in 6 countries3.5 M€ from 2010 – 2013Coordinator Soton

Aim:

To valorise the energy from food waste by anaerobic digestion (AD), with full evaluation of the associated whole-life energy balances from collection to product utilisation.

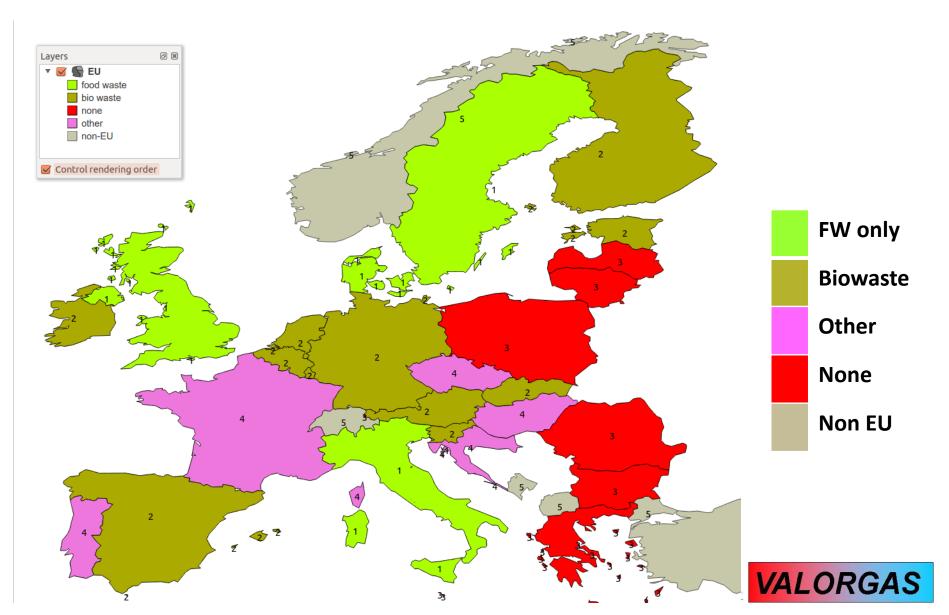
FW recovery

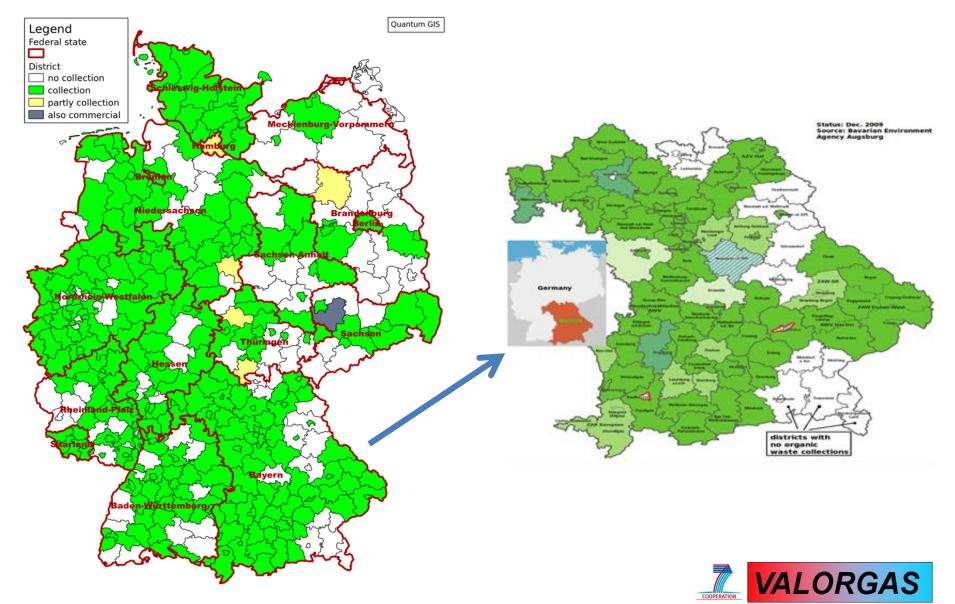
- Allows efficient recovery of a second-generation fuel product with multiple end-uses
- Returns nutrients to agriculture, with associated economic, energy and carbon gains from offsetting of artificial fertilisers
- Reduces moisture content of residual waste, improving CV and efficiency of thermal recovery, and increasing the range of thermal technologies
- Increases potential for recovery of commodity grade recyclables

Today's presentation

- FW collection systems in Europe
 Energy in FW collection
- FW characterisation
 - Compositional characteristics
 - Biochemical composition
 - Contaminants
- Anaerobic digestion of FW
- How it joins up

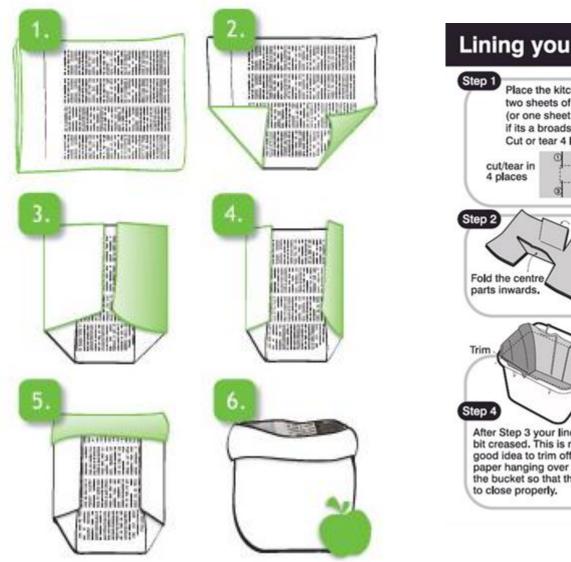
FW collection schemes in Europe

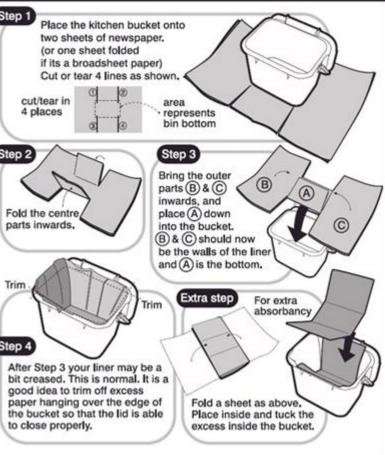

- Key factors that affect performance
 - Gross weight, contamination, participation, capture rate etc
- Questions
 - Who collects it?
 - How is this done?
 - What type of information is available and how easy is it to get?



FW collection schemes in Europe

- Methodologies
 - quantitative compositional analysis, observational studies, public opinion surveys
- Web-based surveys
 - Organisations
 - Search terms
- Pilot
- Modifications
- QA





Lining your kitchen bucket

- 3 types but merge
 - critical for plant design and operation
- Container size a significant factor
 - plastic bags
- Inconsistent definitions
- Good practice information
- Methodology

FW Collection

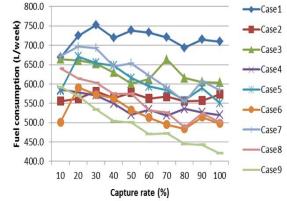
- Energy out > Energy in ☺
- Energy out < Energy in ⊗
- Multiple factors
 - Climate, population size and density, vehicle type, working hours, collection frequency, participation rate, segregation efficiency: no information

Mechanistic model

Input

- No. of households, housing density, FW generation rate, participation rate, collection frequency etc
- Select
 - Vehicle type, crew size, no. of bins etc

Outputs


– fuel consumption, collection hours (staff time), no.
 of vehicles required

Mechanistic model

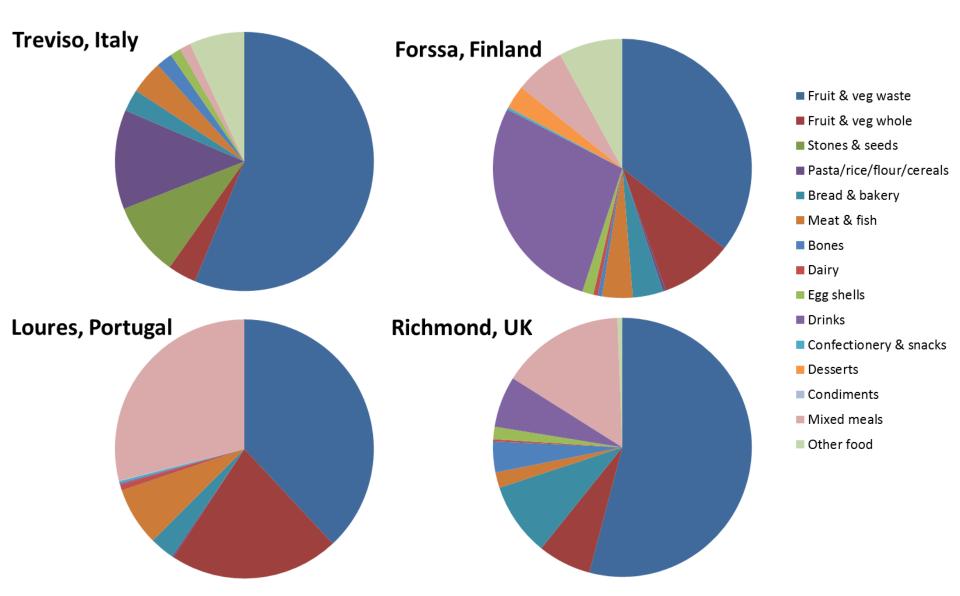
- Fuel savings of 25% and more
- Insights on vehicle design
 pod better than split

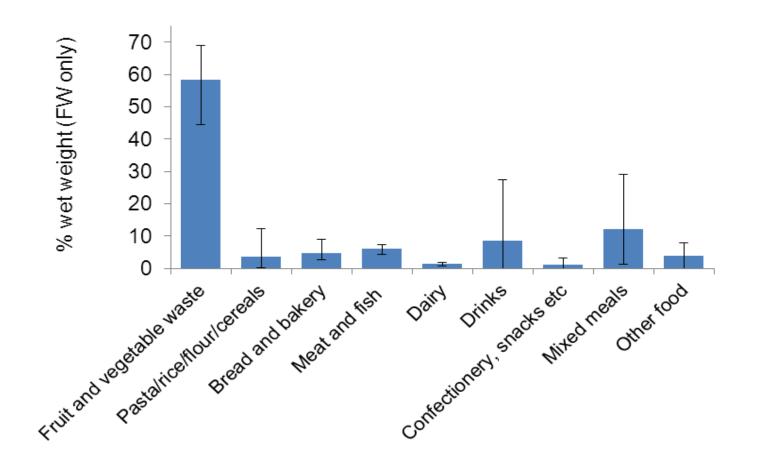
Scoping tool

- Best: weekly food waste collection with AWC of recyclable and residual waste by compartmentalised vehicle
- Worst: weekly separate collection of recyclables, residual and food waste by single-compartment RCV

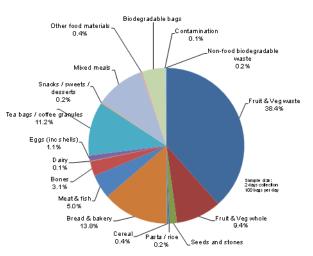
FW composition

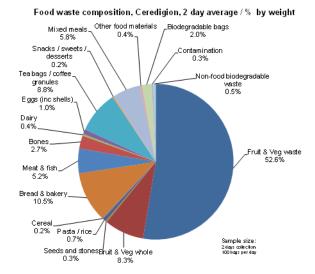
- Approaches
 - Compositional characterisation
 - Physico-chemical analyses
- Composition categories?
 - WRAP and other studies
 - Partner systems

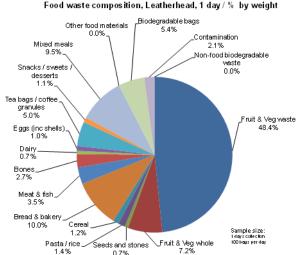

WRAP revised (2009)	WRAP original (2008)	VALORSUL	VALORGAS	Greenfinch		
1 Fresh vegetables and salads	7 Vegetables	1 Vegetables	1 1a Fruit and vegetable waste	1 Fruit & veg peelings		
3 Fresh fruit	5 Fruit	13 Fruit	1b Fruit and vegetables (whole)	2 Fruit & veg whole		
8 Processed vegetables and salad	6 Salads	3 Salads	1c Large stones, seeds and fibrous	17 Seeds & stones		
14 Processed fruit			materials			
10 Staple foods	4 Dried foods/powders	8 Dried foods/powders	2 Pasta/rice/flour/cereals	3 Pasta/rice/flour 9 Cereal		
4 Bakery	1 Bakery	10 Bakery	3 Bread and bakery	4 Bread and bakery		
6 Meat and fish	2 Meat and fish	9 Meat and fish	4 4a Meat and fish	5 Meat and fish		
		32 Special - bones	4b Bones	6 Bones		
7 Dairy and eggs	3 Dairy	7 Dairy	5 5a Dairy	8 Dairy		
			5b Egg shells	7 Eggs		
2 Drinks	9 Drinks	4 Drinks	6 Drinks	10 Tea bags & coffee		
13 Confectionery and snacks	8 Confectionery and snacks	5 Snacks	7 7a Confectionery and snacks	11 Sweets & desserts		
11 Cake and desserts	11 Desserts		7b Desserts			
9 Condiments, sauces, herbs and	10 Condiments, sauces, herbs and	12 Condiments, sauces, herbs and	8 8a Condiments			
spices	spices	spices				
5 Meals (homemade and pre-	12 Mixed foods	6 Mixed meals	8b Mixed meals	16 Mixed meals		
prepared)						
15 Other	13 Other	11 Other food	9 Other food	12 Other food material		
12 Oil and fat						
			10 Biodegradable bags	14 Biodegradable bags		
		2 Garden waste	11 Garden waste	13 Non food biodegradable w		
		14 Paper	12 Paper and card			
		15 Cardboard - packaging				
		16 Cardboard - non packaging				
		17 Plastic - film bags	1313a Plastic containers			
		18 Plastic - bottles	13b Plastic film (non-biodegradable)			
		19 Plastic - polystyrene				
		20 Plastic - other				
		23 Ferrous metals	13d Metals			
		24 Non ferrous metals				
		21 Glass - packaging	13e Glass			
		22 Glass - non packaging				
		25 Composites	13f Miscellaneous			
		26 Textiles				
		27 Sanitary textiles				
		28 Combustibles - wood				
		29 Combustibles - other				
		30 Incombustibles				
		31 Special - packaged organics				
		33 Special - other				

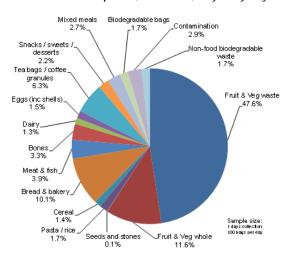

- VALORGAS partners

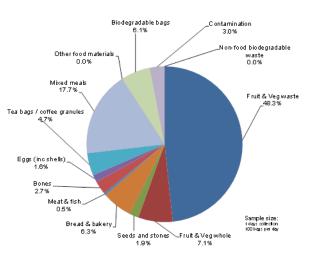
 Finland, Portugal, Italy, UK
- Multiple studies in UK

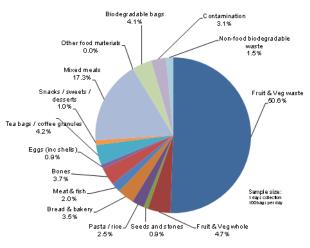







Food waste composition, Presteigne, 2 day average / % by weight




Food waste composition, Central Beds, 1 day / % by weight

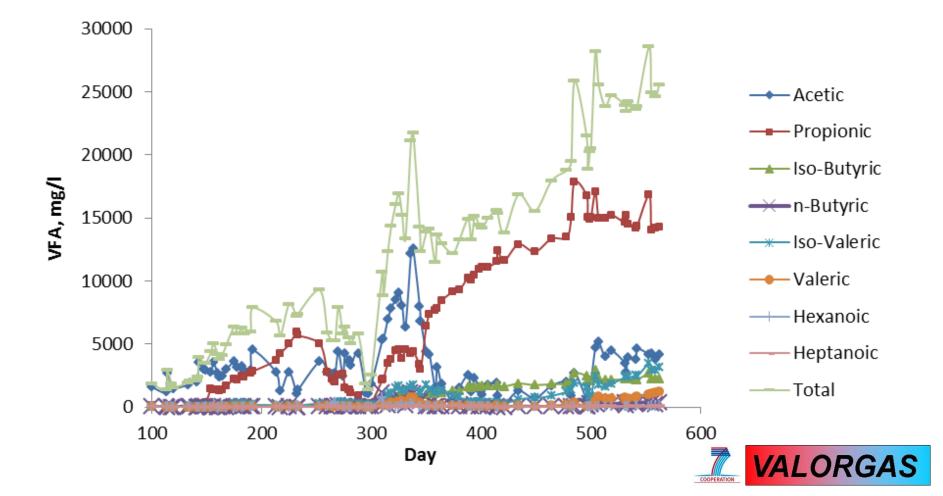
Food waste composition, Surrey, 1 day / % by weight

Food waste composition, Ealing, 1 day / % by weight

Physico-chemical analysis

		UK				Finland Italy			Portugal			
		Luton ^a	Hackney ^a	Ludlow ^a	Eastleigh	Eastleigh	Forssa	Treviso	Treviso	Lisbon	Lisbon	Lisbon
			-							raw waste	to digester	to digester
		(Lab 2)	(Lab 2)	(Lab 2)	(Lab 2)	(Lab 1)	(Lab 1)	(Lab 1)	(Lab 3)	(Lab 3)	(Lab 1)	(Lab 3)
Fundamental	characteristi	ics for anaero	bic digestion									
pH		$5.12\pm\ 0.01$	$5.18 \pm \ 0.01$	4.71 ± 0.01	5.02 ± 0.01	5.70	5.34	6.16				
TS	% WW ^b	23.70 ± 0.06	25.74 ± 0.18	23.74 ± 0.08	25.89 ± 0.01	28.62 ± 0.07	27.02 ± 0.12	27.47 ± 0.03	24 43 ±4 57	33.80	~~~~	
VS	% WW	21.84 ± 0.10	23.47 ± 0.31	21.71 ± 0.09	24.00 ± 0.03	26.83 ± 0.16	24.91 ± 0.05	23.60 ± 0.09	20.16 ± 3.75	27.60	22-279	6
VS	%TS	91.28 ± 0.20	91.17 ± 0.91	91.44 ± 0.39	92.70 ± 0.12	94.18 ± 0.42	92.26 ± 0.26	86.60 ± 0.40	83.32 ± 5.87	81.7		
TOC	%TS	51.2 ± 1.2	51.3 ± 0.2	48.3 ± 1.0	48.76 ± 0.87							
TKN		3.12 ± 0.01	3.13 ± 0.03	3.42 ± 0.04	2.91 ± 0.05	2.74 ± 0.05	2.39 ± 0.04	2.55 ± 0.03	2.84 ± 0.76	1.5	6.93 ± 0.07	4.30
TKN	g kg ⁻¹ WW	7.39 ± 0.02	8.06 ± 0.08	8.12 ± 0.09	7.53 ± 0.13	7.84 ± 0.16	6.45 ± 0.1	7.02 ± 0.1	7.19 ± 2.06	5.1	4.37 ± 0.05	2.72
CV	kJ g ⁻¹ TS	21.43 ± 0.12	21.64 ± 0.11	20.66 ± 0.18	20.97 ± 0.02	21.32 ± 0.08	21.39 ± 0.11	20.50 ± 0.01			25.23 ± 0.26	
Biochemical c	composition											
Lipids	g kg ⁻¹ VS	148 ± 4	157 ± 2	151 ± 1	149 ± 1	152 ± 2	156 ± 0.5	202 ± 0.5			314 ± 0.4	
Crude protein	$g kg^{-1} VS$	213 ± 1	213 ± 2	235 ± 3	197 ± 4	183 ± 4	162 ± 0.4	186 ± 3				
Nutrients												
TKN (N)	g kg ⁻¹ TS	31.2 ± 0.1	31.3 ± 0.3	34.2 ± 0.4	29.1 ± 0.5	27.4 ± 0.5	23.9 ± 0.4	25.5 ± 0.3	28.44 ± 7.62	15	23-30	%
TP (P)	g kg ⁻¹ TS	4.87 ± 0.08	6.41 ± 0.12	5.41 ± 0.32	2.82 ± 0.13	2.94 ± 0.01	2.73 ± 0.05	3.47 ± 0.06	3.26 ± 1.54	5.0		
TK (K)	g kg ⁻¹ TS	12.3 ± 0.1	12.9 ± 0.6	14.3 ± 0.8	8.59 ± 0.27	11.2 ± 0.2	10.0 ± 0.2	10.0 ± 0.1				
Elemental and	alysis											
Ν	%TS	3.12 ± 0.01	3.13 ± 0.03	3.42 ± 0.04	2.91 ± 0.05	2.80 ± 0.02	2.46 ± 0.03	2.58 ± 0.05			5.72 ± 0	
С	%TS	51.2 ± 1.2	51.3 ± 0.2	48.3 ± 1.0	48.8 ± 0.9	50.6 ± 0.2	49.4 ± 0.04	47.2 ± 0.01			54.8 ± 0.1	
Н	%TS	6.56 ± 0.04	6.67 ± 0.13	5.53 ± 0.63	6.37 ± 0.19							
S	%TS	0.21 ± 0.00	0.23 ± 0.03	0.15 ± 0.01								
0	%TS	30.7 ± 1.2	29.8 ± 0.4	34.3 ± 2.5	34.7 ± 0.9							

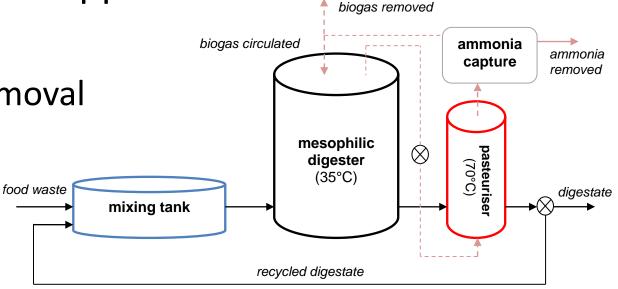
^a Samples analysed as part of the Defra funded project WR1208 (Banks et al., 2011) ^b WW = wet weight


Overall characterisation

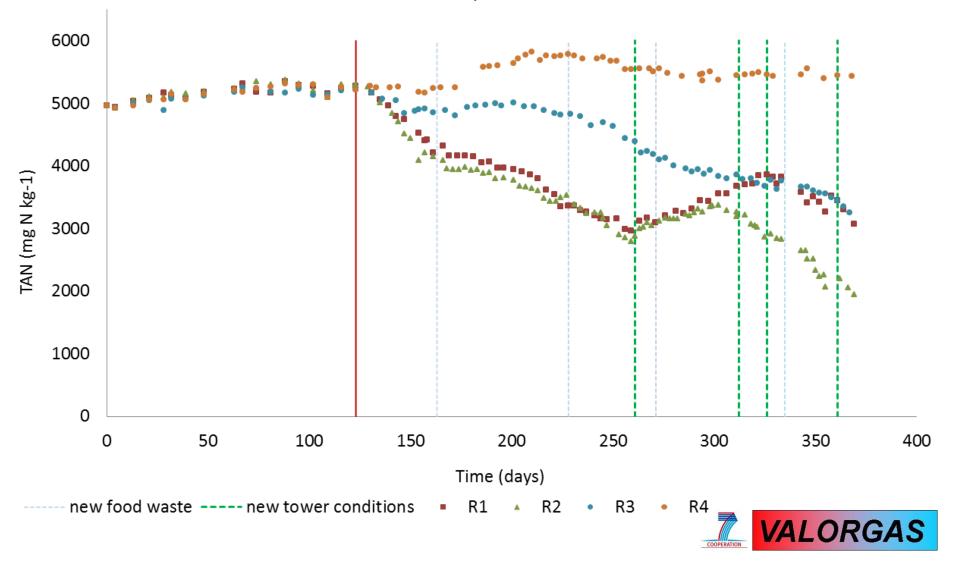
• Similar

...but may be changing?

• Early problems associated with this feedstock



- ... now resolved at mesophilic temperatures
 - hypothesis on metabolic pathway and role of hydrogenotrophic methanogens proven
- Laboratory-scale reactors running at up to 7 kg
 VS m⁻³ day⁻¹, compared to < 2 kg VS m⁻³ day⁻¹
- Robust under varying loading


- ... still unclear in thermophilic conditions
 - different metabolic pathways and microorganisms, increased ammonia toxicity
- Looking at other approaches
 - Dilution
 - Ammonia removal

Ammonia removal

TAN profile

Ammonia removal

- Potential solution for thermophilic operation
- Opens up possibility of 'designer digestates'
- Application to other feedstocks

Overall view

- Other activities
 - gas upgrading, use in transport, case studies, residuals
- Energy balance approach
 - energy carbon nutrient
 - 'join up the bits'
 - complex versus simple
 - consequences of decisions

Thank you!

www.valorgas.soton.ac.uk

